Category Archives: Site Planning

Traditional House and Site

Traditional house and site

Traditional house and site

This is a quick snapshot of a traditional house and its site plan currently in progress. I'm posting this to illustrate the larger view of architectural design.

It's common to understand traditional residential design as the simple front elevation shown in the black and white image. These are easy to create as a mirage to fool the eye without really understanding the relationship of all the materials and forms. About 99.9% of "blueprint" plan websites do this. But the designs are not grounded in reality.

Neither are they grounded on the ground.

That's the point here, the house design and the site need to be connected for a cohesive approach.

This site plan shows the front drive circle aligning with the entry gable of the house. Existing topographic lines (light grey) and proposed (bright green) plan how the ground is re-graded. Each line represents one foot. Compare how the topopgraphy drops off around the house to the right in both site plan and elevation. See how they match? The grade makes a huge difference to each side of the building. But this isn't something that a simple house plan coordinates. It takes working back and forth between the two to refine the design.

This is called site-specific design.

Share: FacebooktwittermailFacebooktwittermail Follow: pinterestrssinstagrampinterestrssinstagram

Utility Colors

Utility Colors

Utility Colors

A water line break in my front yard is an opportunity to review the American Public Works Association (APWA) color coding standard for underground utilities:

RED : electrical
ORANGE : data (phone, CATV)
YELLOW : gas (and oil, steam)
BLUE : water, potable
GREEN : sewer
(not seen in the photo above)
PURPLE : water, non-potable (irrigation, reclaimed)
PINK : survey
WHITE : excavation

You'll notice the markings in my yard include two orange lines, one for telephone and the other for cable television. It's not uncommon for multiple services to be present that are owned or managed by different companies. In the Triangle exist many other common services: fiber optic data, liquid petroleum, natural gas distribution, security, satellite downlinks, irrigation, and re-claimed water.

These conventions came about because buried services are a huge hazard and having conventions to locate and key them are critical to the nation's infrastructure. A 1999 US Department of Transportation study was the impetus for tying local, regional, and national governments and utility companies to a clearinghouse of locating services available to the public for free. This is done through the auspices of the Common Ground Alliance.

If you're planning any kind of construction, repair, or installation within the ground, get all the utilities located for free through the website or three-digit telephone number: 811.

SteveHallArchitecture uses these same colors in our electronic drawings for consistency with the AWPA standards and continuity with what we see in the field. In a fast growing area like the Triangle, you'll see these markings everywhere. Next time you take a walk, test yourself on the standard!

Share: FacebooktwittermailFacebooktwittermail Follow: pinterestrssinstagrampinterestrssinstagram

Multi-level Scheme, Sketch 2016-05-01

sketch, 2016-05-01-ish, house space diagrams

sketch, 2016-05-01-ish, house space diagrams

Sketching is the fastest way to analyze three-dimensional relationships.

I usually rely on 3D virtual models to firm up the details, but my initial sketches form the foundation of thought that shape the rest of the process.

The above sketch is a house set on the side of a mountain in Black Mountain, North Carolina. It's a given that the structure and forms need to respond to the steep slope of the site. But an additional demand is that it also be accessible... useful with an age in place strategy for the homeowners as they become elderly and potentially too feeble to negotiate full flights of stairs at a time.

With these guidelines, I instinctively look for a scheme of half levels. This keeps intermediate flights between spaces at most six steps. It also balances the house across the site and minimizes the amount of deep cuts or fill areas that might be required of the topography. The above sketch are numerous quick looks at such a scheme.

It is important when creating series of spaces to understand their relationships. You can see abbreviations for the living areas scattered about the drawings. Hurried and loose sketches help keep the exploration fluid and flexible. Nothing is fixated until the entire scheme begins to come together.

A developed depiction of this concept can be seen in the 1934 Villa Muller by Adolf Loos, in Prague. For this early twentieth century Viennese architect, his crowning work was also his last. It is a rich example of his concept for multi-level floors within a simpler exterior, which he called Raumplan.

Villa Muller's exterior is a simple, unadorned cube. It was intended as the quiet, reserved public face of the house overlooking the city.

But the interior is an exuberant intertwining of spaces and materials connected by short half flights of stairs. Many, small, comfortable and intimate spaces are all tied together by paths and views into and across each other.

Below is a floor level diagram. It is difficult to understand in two dimensions so I've removed all the walls from the model and colored each floor uniquely. Except for the top floor (orange) and the roof, the two lower main floors actually have sections that ascend or descend from the neighboring section.

From the lowest, darkest basement level all the way up to the walkable roof, there are multiple sets of stairs connecting each quadrant of the house. Both stairs are centered under skylights on the roof so that natural light is filtered down through the entire house from above. It's a masterful scheme in just 3,400 SF.

Floor level diagram of the 1934 Villa Muller, by Adolf Loos

Floor level diagram of the 1934 Villa Muller, by Adolf Loos

For more images of Villa Muller, see this Google image search. Share: FacebooktwittermailFacebooktwittermail Follow: pinterestrssinstagrampinterestrssinstagram

Triangle Sundial

Triangle Sundial at Winter Solstice

Triangle Sundial at Winter Solstice

Today is the winter solstice! It’s a time for optimism—from here on, the days will be getting longer.

At 12:11pm EST today, the precise time of the winter solstice, the sun angle is more than 45 degrees lower than on June 21, the summer solstice. Because of this angle, it goes below the horizon earlier than on any other day. Today will be almost 5 hours shorter than the summer solstice.

These two simple factors, the sun angle and the length of day, have impacted building design since Woodhenge (Stonehenge’s little brother). I’m probably a bit of an astronomy fan because of it. The solstice reminds me of extremes, how buildings are deprived of heating sunlight during cold winters and subjected to an enormous amount of heating radiation during hot summer days. The astronomical reality makes quite the impact on energy usage and utility bills during both seasons. Especially when it isn’t considered.

Fortunately, we can design the building envelope to use solar angles in our favor. Simply considering them can both inform design, make more comfortable spaces, and save energy. Since the passive energy design studio I took from John Nelson at UNC Charlotte back about 1988, it is interesting to see this correlation play out in practice. I strongly recommend Sun, Wind, and Light: Architectural Design Strategies by G. Z. Brown for anyone interested in an introduction to these environmental design concepts.

As a personal example, aiming a heavy brick screen with small punched windows toward the southwest in my design of the medical office building resulted in HVAC equipment an entire size smaller. So it saved money on the construction of the building as well as all future cooling costs. Plus the smaller windows reduce the southern glare for the occupants inside. That’s a lot of wins without any drawbacks just by considering the sun at the beginning of design.

Today makes a great day to illustrate exactly how low the sun really is—with an accurate sundial. The typical sundial can be inaccurate up to one or two hours depending on several factors. So I designed one inspired by the Brown book1.

Triangle Sundial

Triangle Sundial at Winter Solstice

In the instructions below is a specially tuned sundial you can download. It is tuned precisely to the center of Raleigh-Durham. (Technically, Latitude 35.8° and Longitude -78.8°, exactly at the Raleigh Chinese Christian Church in Cary, on Hwy. 54 just west of NW Maynard Rd.)

It is also tuned to the wobble of the earth, which varies the shadow of sun quite a bit throughout the year. As you can see, the curve of the red and magenta lines indicates this correction. (If it didn’t wobble, these would be straight lines.)

This sundial is also based on standard local time, meaning it is adjusted to Raleigh-Durham for the sun’s position within the entire width of the Eastern Time Zone. (Which extends from Maine to Western Michigan.)

Finally, it is set to Eastern Standard Time. The United States has been adopting some form of clock adjustment since World War 1 in the implementation of Daylight Savings Time. This means that from March 9 and November 2 you’ll have to add an hour for the dial to read correctly.

One final tip: For accurate readings, the sundial must be dead flat and pointed toward true north, as in the North Pole and the North Star. But not magnetic North, such as with a compass or smartphone, because here in the Triangle it will be 9 degrees farther left than true north due to magnetic declination. This is the considerable gap between the magnetic axis and the rotational axis of the earth, which can equate to about a month and an hour to a sundial.

Triangle Sundial at Winter Solstice

Triangle Sundial at Winter Solstice

Instructions

  1. Download my accurate Triangle sundial (PDF, 123k).
  2. Cut the tip of a toothpick to the length for the gnomon indicated and attach.
  3. Level the sundial surface with a bubble level. Accuracy matters!2
  4. Point the sundial to True North. (With a compass, True North will be 9° right/clockwise from Magnetic North.)
  5. In March-October, subtract an hour to correct the 1 hour addition by Daylight Savings Time.

Accuracy is affected by the length and straightness of the gnomon, the levelness of the dial, and how close alignment is to True North. Please comment below or contact me if you can’t figure it out, I’m more than happy to help!

Notes

  1. My sundial calculations were generated with the Sundial Program from the University of Oregon Solar Radiation Monitoring Laboratory.
  2. Smartphone apps can work in a pinch, but a true level is more accurate. Same goes for the compass. I recommend the Swiss Army Knife on Android for the phone. Please send me an email or comment below to recommend a good one for iOS.


Share: FacebooktwittermailFacebooktwittermail Follow: pinterestrssinstagrampinterestrssinstagram